Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41
1.
Front Neurosci ; 18: 1277626, 2024.
Article En | MEDLINE | ID: mdl-38591068

Introduction: A water extract of Centella asiatica (L.) Urban [Apiaceae] (CAW) has demonstrated cognitive-enhancing effects in mouse models of Alzheimer's disease and aging, the magnitude of which is influenced by whether CAW is delivered in the drinking water or the diet. These cognitive benefits are accompanied by improvements in oxidative stress and mitochondrial function in the brain, two pathways related to the neuroinflammatory response. The effect of CAW on neuroinflammation, however, has not been directly studied. Here, we investigated the effect of CAW on neuroinflammation in 5xFAD mice and compared plasma levels of CAW's active compounds following two modes of CAW administration. Methods: Eight-to-nine-month-old male and female 5xFAD mice and their wild-type littermates were administered CAW in their diet or drinking water (0 or 1,000 mg/kg/day) for five weeks. Immunohistochemistry was performed for ß-amyloid (Aß), glial fibrillary acidic protein (GFAP), and Griffonia simplicifolia lectin I (GSL I) in the cortex and hippocampus. Gene expression of inflammatory mediators (IL-6, TNFα, IL-1ß, TREM2, AIF1, CX3CR1, CX3CL1, CD36, C3AR1, RAGE, CCR6, CD3E) was measured in the deep grey matter. Results: CAW decreased cortical Aß plaque burden in female 5xFAD mice administered CAW in the drinking water but had no effect on Aß plaques in other treatment groups. CAW did not impact elevated levels of GFAP or GSL I in 5xFAD mice, regardless of sex, brain region, or mode of CAW administration. In the deep grey matter, CAW increased C3AR1 expression in 5xFAD females administered CAW in the drinking water and decreased IL-1ß expression in 5xFAD males administered CAW in the diet. CAW had no effect, however, on gene expression levels of any other inflammatory mediator in the deep grey, for either sex or mode of CAW administration. Mice administered CAW in the drinking water versus the diet had significantly higher plasma levels of CAW compounds. Discussion: CAW had little impact on the neuroinflammatory markers selected for evaluation in the present study, suggesting that the cognitive benefits of CAW may not be mediated by an anti-inflammatory effect or that additional molecular markers are needed to fully characterize the effect of CAW on neuroinflammation.

2.
Molecules ; 29(4)2024 Feb 13.
Article En | MEDLINE | ID: mdl-38398590

Rapid screening of botanical extracts for the discovery of bioactive natural products was performed using a fractionation approach in conjunction with flow-injection high-resolution mass spectrometry for obtaining chemical fingerprints of each fraction, enabling the correlation of the relative abundance of molecular features (representing individual phytochemicals) with the read-outs of bioassays. We applied this strategy for discovering and identifying constituents of Centella asiatica (C. asiatica) that protect against Aß cytotoxicity in vitro. C. asiatica has been associated with improving mental health and cognitive function, with potential use in Alzheimer's disease. Human neuroblastoma MC65 cells were exposed to subfractions of an aqueous extract of C. asiatica to evaluate the protective benefit derived from these subfractions against amyloid ß-cytotoxicity. The % viability score of the cells exposed to each subfraction was used in conjunction with the intensity of the molecular features in two computational models, namely Elastic Net and selectivity ratio, to determine the relationship of the peak intensity of molecular features with % viability. Finally, the correlation of mass spectral features with MC65 protection and their abundance in different sub-fractions were visualized using GNPS molecular networking. Both computational methods unequivocally identified dicaffeoylquinic acids as providing strong protection against Aß-toxicity in MC65 cells, in agreement with the protective effects observed for these compounds in previous preclinical model studies.


Alzheimer Disease , Centella , Quinic Acid/analogs & derivatives , Triterpenes , Humans , Amyloid beta-Peptides/toxicity , Alzheimer Disease/drug therapy , Plant Extracts/pharmacology , Cognition , Centella/chemistry , Triterpenes/analysis , Biological Assay , Computer Simulation
3.
bioRxiv ; 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38328129

We have previously reported that a water extract (CAW) of the Ayurvedic plant Centella asiatica administered in drinking water can improve cognitive deficits in mouse models of aging and neurodegenerative diseases. Here we compared the effects of CAW administered in drinking water or the diet on cognition, measures of anxiety and depression-like behavior in healthy aged mice. Three- and eighteen-month-old male and female C57BL6 mice were administered rodent AIN-93M diet containing CAW (0, 0.2, 0.5 or 1% w/w) to provide 0, 200 mg/kg/d, 500 mg/kg/d or 1000 mg/kg/d for a total of 5 weeks. An additional group of eighteen-month-old mice were treated with CAW (10 mg/mL) in their drinking water for a total of five weeks to deliver the same exposure of CAW as the highest dietary dose (1000 mg/kg/d). CAW doses delivered were calculated based on food and water consumption measured in previous experiments. In the fourth and fifth weeks, mice underwent behavioral testing of cognition, anxiety and depression (n=12 of each sex per treatment group in each test). Aged mice of both sexes showed cognitive deficits relative to young mice while only female aged mice showed increased anxiety compared to the young female mice and no differences in depression were observed between the different ages. CAW (1000 mg/kg/d) in the drinking water improved deficits in aged mice in learning, executive function and recognition memory in both sexes and attenuated the increased measures of anxiety observed in the aged female mice. However, CAW in the diet only improved executive function in aged mice at the highest dose (1000 mg/kg/d) in both sexes and did so less robustly than when given in the water. There were no effects of CAW on depression-like behavior in aged animals regardless of whether it was administered in the diet or the water. These results suggest that CAW can ameliorate age-related changes in measures of anxiety and cognition and that the mode of administration is important for the effects of CAW on resilience to these age-related changes.

4.
J Chromatogr Open ; 42023 Nov 27.
Article En | MEDLINE | ID: mdl-37789901

Centella asiatica (CA) is a culinary vegetable and well-known functional food that is widely used as a medicinal herb and dietary supplement. CA is rich in pentacyclic triterpenes (TTs), including asiaticoside (AS), madecassoside (MS) and the related aglycones asiatic acid (AA), madecassic acid (MA). Traditionally, TTs have been associated with the bioactivity and health promoting effect of CA. Recently, mono-caffeoylquinic acids (MonoCQAs) and di-caffeoylquinic acids (DiCQAs) have been found to contribute to the bioactivity of CA as well. This work reports an analytical strategy based on liquid chromatography coupled to multiple reaction monitoring mass spectrometry (LC-MRM-MS) for the simultaneous rapid and accurate quantification of 12 bioactive compounds in CA, namely AS, MS, AA, MA, 5-CQA, 4-CQA, 3-CQA, 1,3-DiCQA, 3,4-DiCQA, 1,5-DiCQA, 3,5-DiCQA, 4,5-DiCQA. Method selectivity, accuracy, precision, repeatability, robustness, linearity range, limit of detection (LOD), and limit of quantitation (LOQ) were validated. The validated LC-MRM-MS method has been successfully applied to quantify the 12 bioactive compounds in CA aqueous extracts and two related formulations: a standardized CA product (CAP) used in a phase I clinical trial and formulated CA rodent diets used in preclinical studies. The validated method allows us to support the standardization of CA products used for clinical trials and conduct routine LC-MRM-MS analyses of formulated preclinical diets to confirm correct levels of CA phytochemical markers.

5.
Res Sq ; 2023 Oct 06.
Article En | MEDLINE | ID: mdl-37886497

Centella asiatica (Centella) is a traditional botanical medicine that shows promise in treating dementia based on behavioral alterations seen in animal models of aging and cognitive dysfunction. In order to determine if Centella could similarly improve cognitive function and reduce disease burden in multiple sclerosis (MS), we tested its effects in the neuroinflammatory experimental autoimmune encephalomyelitis (EAE) model of MS. In two independent experiments, C57BL/6J mice were treated following induction of EAE with either a standardized water extract of Centella (CAW) or placebo for 2 weeks. At the dosing schedule and concentrations tested, CAW did not improve behavioral performance, EAE motor disability, or degrees of demyelination. However, CAW-treated mice demonstrated increases in nuclear factor (erythroid-derived 2)-like 2 and other antioxidant response element genes, and increases in mitochondrial respiratory activity. Caw also decreased spinal cord inflammation. Our findings indicate that CAW can increase antioxidant gene expression and mitochondrial respiratory activity in mice with EAE, supporting investigation of the clinical effects of CAW in people with MS.

6.
Nutrients ; 15(18)2023 Sep 16.
Article En | MEDLINE | ID: mdl-37764799

Common symptoms of depressive disorders include anhedonia, sleep problems, and reduced physical activity. Drugs used to treat depression mostly aim to increase serotonin signaling but these can have unwanted side effects. Depression has also been treated by traditional medicine using plants like Centella asiatica (CA) and this has been found to be well tolerated. However, very few controlled studies have addressed CA's protective role in depression, nor have the active compounds or mechanisms that mediate this function been identified. To address this issue, we used Drosophila melanogaster to investigate whether CA can improve depression-associated symptoms like anhedonia and decreased climbing activity. We found that a water extract of CA provides resilience to stress induced phenotypes and that this effect is primarily due to mono-caffeoylquinic acids found in CA. Furthermore, we describe that the protective function of CA is due to a synergy between chlorogenic acid and one of its isomers also present in CA. However, increasing the concentration of chlorogenic acid can overcome the requirement for the second isomer. Lastly, we found that chlorogenic acid acts via calcineurin, a multifunctional phosphatase that can regulate synaptic transmission and plasticity and is also involved in neuronal maintenance.


Centella , Resilience, Psychological , Triterpenes , Animals , Chlorogenic Acid/pharmacology , Drosophila melanogaster , Calcineurin , Anhedonia , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Triterpenes/pharmacology , Triterpenes/therapeutic use
7.
Front Pharmacol ; 14: 1228030, 2023.
Article En | MEDLINE | ID: mdl-37680716

Introduction: Centella asiatica is an herbaceous plant reputed in Eastern medicine to improve memory. Preclinical studies have shown that C. asiatica aqueous extract (CAW) improves neuronal health, reduces oxidative stress, and positively impacts learning and cognition. This study aimed to develop and validate bioanalytical methods for detecting known bioactive compounds from C. asiatica in human biological matrices and apply them to a human pharmacokinetic trial in healthy older adults. Methods: High performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used for detecting triterpenes and caffeoylquinic acids from C. asiatica, or their metabolites, in human plasma and urine. Validation parameters including linearity, precision, accuracy, recovery and thermal stability were evaluated. The method was applied to a Phase I, randomized, double-blind, crossover trial of two doses (2 or 4 g) of a standardized C. asiatica water extract product (CAP) in eight healthy older adults. Pharmacokinetic parameters were measured over a 12-h post administration period and acute safety was assessed. Results: The method satisfied US Food & Drug Administration criteria for linearity and recovery of the analytes of interest in human plasma and urine. The method also satisfied criteria for precision and accuracy at medium and high concentrations. Single administration of 2 and 4 g of CAP was well tolerated and safe in healthy older adults. The parent triterpene glycosides, asiaticoside and madecassoside, were not detected in plasma and in minimal amounts in urinary excretion analyses, while the aglycones, asiatic acid and madecassic acid, showed readily detectable pharmacokinetic profiles. Similarly, the di-caffeoylquinic acids and mono-caffeoylquinic acids were detected in low quantities, while their putative metabolites showed readily detectable pharmacokinetic profiles and urinary excretion. Discussion: This method was able to identify and calculate the concentration of triterpenes and caffeoylquinic acids from C. asiatica, or their metabolites, in human plasma and urine. The oral absorption of these key compounds from CAP, and its acute safety in healthy older adults, support the use of this C. asiatica product in future clinical trials.

8.
Mol Cell Neurosci ; 126: 103883, 2023 09.
Article En | MEDLINE | ID: mdl-37527694

There is growing interest in the use of natural products for the treatment of Parkinson's disease (PD). Mucuna pruriens has been used in the treatment of humans with PD. The goal of this study was to determine if daily oral treatment with an extract of Mucuna pruriens, starting after the MPTP-induced loss of nigrostriatal dopamine in male mice, would result in recovery/restoration of motor function, tyrosine hydroxylase (TH) protein expression in the nigrostriatal pathway, or glutamate biomarkers in both the striatum and motor cortex. Following MPTP administration, resulting in an 80 % loss of striatal TH, treatment with Mucuna pruriens failed to rescue either striatal TH or the dopamine transporter back to the control levels, but there was restoration of gait/motor function. There was an MPTP-induced loss of TH-labeled neurons in the substantia nigra pars compacta and in the number of striatal dendritic spines, both of which failed to be recovered following treatment with Mucuna pruriens. This Mucuna pruriens-induced locomotor recovery following MPTP was associated with restoration of two striatal glutamate transporter proteins, GLAST (EAAT1) and EAAC1 (EAAT3), and the vesicular glutamate transporter 2 (Vglut2) within the motor cortex. Post-MPTP treatment with Mucuna pruriens, results in locomotor improvement that is associated with recovery of striatal and motor cortex glutamate transporters but is independent of nigrostriatal TH restoration.


Mucuna , Parkinson Disease , Plant Extracts , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Glutamic Acid/metabolism , Biomarkers/metabolism , Motor Cortex/drug effects , Motor Cortex/metabolism , Motor Cortex/pathology , Mucuna/chemistry , Plant Extracts/administration & dosage , Gait/drug effects , Pars Compacta/metabolism , Pars Compacta/pathology , Basal Ganglia/metabolism , Basal Ganglia/pathology , Animals , Mice
9.
Adv Nutr ; 14(5): 948-958, 2023 09.
Article En | MEDLINE | ID: mdl-37270030

Achieving optimal health is an aspirational goal for the population, yet the definition of health remains unclear. The role of nutrition in health has evolved beyond correcting malnutrition and specific deficiencies and has begun to focus more on achieving and maintaining 'optimal' health through nutrition. As such, the Council for Responsible Nutrition held its October 2022 Science in Session conference to advance this concept. Here, we summarize and discuss the findings of their Optimizing Health through Nutrition - Opportunities and Challenges workshop, including several gaps that need to be addressed to advance progress in the field. Defining and evaluating various indices of optimal health will require overcoming these key gaps. For example, there is a strong need to develop better biomarkers of nutrient status, including more accurate markers of food intake, as well as biomarkers of optimal health that account for maintaining resilience-the ability to recover from or respond to stressors without loss to physical and cognitive performance. In addition, there is a need to identify factors that drive individualized responses to nutrition, including genotype, metabotypes, and the gut microbiome, and to realize the opportunity of precision nutrition for optimal health. This review outlines hallmarks of resilience, provides current examples of nutritional factors to optimize cognitive and performance resilience, and gives an overview of various genetic, metabolic, and microbiome determinants of individualized responses.


Gastrointestinal Microbiome , Nutritional Sciences , Humans , Nutritional Status , Biomarkers
10.
Nutrients ; 14(19)2022 Sep 22.
Article En | MEDLINE | ID: mdl-36235577

Withania somnifera (WS) extracts have been used in traditional medicine for millennia to promote healthy aging and wellbeing. WS is now also widely used in Western countries as a nutritional supplement to extend healthspan and increase resilience against age-related changes, including sleep deficits and depression. Although human trials have supported beneficial effects of WS, the study designs have varied widely. Plant material is intrinsically complex, and extracts vary widely with the origin of the plant material and the extraction method. Commercial supplements can contain various other ingredients, and the characteristics of the study population can also be varied. To perform maximally controlled experiments, we used plant extracts analyzed for their composition and stability. We then tested these extracts in an inbred Drosophila line to minimize effects of the genetic background in a controlled environment. We found that a water extract of WS (WSAq) was most potent in improving physical fitness, while an ethanol extract (WSE) improved sleep in aged flies. Both extracts provided resilience against stress-induced behavioral changes. WSE contained higher levels of withanolides, which have been proposed to be active ingredients, than WSAq. Therefore, withanolides may mediate the sleep improvement, whereas so-far-unknown ingredients enriched in WSAq likely mediate the effects on fitness and stress-related behavior.


Withania , Withanolides , Aged , Animals , Drosophila melanogaster , Ethanol , Humans , Phenotype , Plant Extracts/pharmacology , Water , Withanolides/pharmacology
11.
Antioxidants (Basel) ; 11(2)2022 Jan 23.
Article En | MEDLINE | ID: mdl-35204098

Centella asiatica is reputed in Eastern medicine to improve cognitive function in humans. Preclinical studies have demonstrated that aqueous extracts of C. asiatica improve cognition in mouse models of aging and Alzheimer's disease (AD) through the modulation of mitochondrial biogenesis and nuclear factor-erythroid-2-related factor 2 (Nrf2)-dependent antioxidant response genes. This randomized, double-blind, crossover Phase I trial explored the oral bioavailability and pharmacokinetics of key compounds from two doses (2 g and 4 g) of a standardized C. asiatica aqueous extract product (CAP), over 10 h, in four mildly demented older adults on cholinesterase inhibitor therapy. The analysis focused on triterpenes (TTs) and caffeoylquinic acids (CQAs), which are known to contribute to C. asiatica's neurological activity. The acute safety of CAP and the effects on NRF2 gene expression in peripheral blood mononuclear cells were evaluated. Single administration of 2 g or 4 g of CAP was safe and well-tolerated. The TT aglycones, asiatic acid and madecassic acid, were identified in plasma and urine, while the parent glycosides, asiaticoside and madecassoside, although abundant in CAP, were absent in plasma and had limited renal excretion. Similarly, mono- and di-CQAs showed delayed absorption and limited presence in plasma or urine, while the putative metabolites of these compounds showed detectable plasma pharmacokinetic profiles and urinary excretion. CAP elicited a temporal change in NRF2 gene expression, mirroring the TT aglycone's pharmacokinetic curve in a paradoxical dose-dependent manner. The oral bioavailability of active compounds or their metabolites, NRF2 target engagement, and the acute safety and tolerability of CAP support the validity of using CAP in future clinical studies.

12.
Antioxidants (Basel) ; 11(1)2022 Jan 06.
Article En | MEDLINE | ID: mdl-35052625

Due to an increase in the aging population, age-related diseases and age-related changes, such as diminished cognition and sleep disturbances, are an increasing health threat. It has been suggested that an increase in oxidative stress underlies many of these changes. Current treatments for these diseases and changes either have low efficacy or have deleterious side effects preventing long-time use. Therefore, alternative treatments that promote healthy aging and provide resilience against these health threats are needed. The herbs Withania somnifera and Centella asiatica may be two such alternatives because both have been connected with reducing oxidative stress and could therefore ameliorate age-related impairments. To test the effects of these herbs on behavioral phenotypes induced by oxidative stress, we used the Drosophila melanogaster sniffer mutant which has high levels of oxidative stress due to reduced carbonyl reductase activity. Effects on cognition and mobility were assessed using phototaxis assays and both, W. somnifera and C. asiatica water extracts improved phototaxis in sniffer mutants. In addition, W. somnifera improved nighttime sleep in male and female sniffer flies and promoted a less fragmented sleep pattern in male sniffer flies. This suggests that W. somnifera and C. asiatica can ameliorate oxidative stress-related changes in behavior and that by doing so they might promote healthy aging in humans.

13.
J Alzheimers Dis ; 85(4): 1601-1619, 2022.
Article En | MEDLINE | ID: mdl-34958022

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease characterized by the accumulation of amyloid-ß (Aß) peptide in the brain. OBJECTIVE: To gain a better insight into alterations in major biochemical pathways underlying AD. METHODS: We compared metabolomic profiles of hippocampal tissue of 20-month-old female Tg2576 mice expressing the familial AD-associated hAPP695SW transgene with their 20-month-old wild type female littermates. RESULTS: The hAPP695SW transgene causes overproduction and accumulation of Aß in the brain. Out of 180 annotated metabolites, 54 metabolites differed (30 higher and 24 lower in Tg2576 versus wild-type hippocampal tissue) and were linked to the amino acid, nucleic acid, glycerophospholipid, ceramide, and fatty acid metabolism. Our results point to 1) heightened metabolic activity as indicated by higher levels of urea, enhanced fatty acid ß-oxidation, and lower fatty acid levels; 2) enhanced redox regulation; and 3) an imbalance of neuro-excitatory and neuro-inhibitory metabolites in hippocampal tissue of aged hAPP695SW transgenic mice. CONCLUSION: Taken together, our results suggest that dysregulation of multiple metabolic pathways associated with a concomitant shift to an excitatory-inhibitory imbalance are contributing mechanisms of AD-related pathology in the Tg2576 mouse.


Amyloid beta-Peptides/metabolism , Metabolomics , Signal Transduction , Transgenes/genetics , Aged , Alzheimer Disease/pathology , Animals , Brain/pathology , Disease Models, Animal , Female , Hippocampus/pathology , Humans , Mice , Mice, Transgenic
14.
Curr Neuropharmacol ; 19(9): 1468-1495, 2021.
Article En | MEDLINE | ID: mdl-34254920

BACKGROUND: Withania somnifera (WS), also known as Ashwagandha, is commonly used in Ayurveda and other traditional medicine systems. WS has seen an increase in worldwide usage due to its reputation as an adaptogen. This popularity has elicited increased scientific study of its biological effects, including a potential application for neuropsychiatric and neurodegenerative disorders. OBJECTIVE: This review aims to provide a comprehensive summary of preclinical and clinical studies examining the neuropsychiatric effects of WS, specifically its application in stress, anxiety, depression, and insomnia. METHODS: Reports of human trials and animal studies of WS were collected primarily from the PubMed, Scopus, and Google Scholar databases. RESULTS: WS root and leaf extracts exhibited noteworthy anti-stress and anti-anxiety activity in animal and human studies. WS also improved symptoms of depression and insomnia, though fewer studies investigated these applications. WS may alleviate these conditions predominantly through modulation of the hypothalamic-pituitary-adrenal and sympathetic-adrenal-medullary axes, as well as through GABAergic and serotonergic pathways. While some studies link specific withanolide components to its neuropsychiatric benefits, there is evidence for the presence of additional, as yet unidentified, active compounds in WS. CONCLUSION: While benefits were seen in the reviewed studies, significant variability in the WS extracts examined prevents a consensus on the optimum WS preparation or dosage for treating neuropsychiatric conditions. WS generally appears safe for human use; however, it will be important to investigate potential herb-drug interactions involving WS if used alongside pharmaceutical interventions. Further elucidation of active compounds of WS is also needed.


Sleep Initiation and Maintenance Disorders , Withania , Animals , Anxiety , Depression , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Sleep Initiation and Maintenance Disorders/drug therapy
15.
Plant J ; 107(5): 1299-1319, 2021 09.
Article En | MEDLINE | ID: mdl-34171156

Caffeoylquinic acids (CQAs) are specialized plant metabolites we encounter in our daily life. Humans consume CQAs in mg-to-gram quantities through dietary consumption of plant products. CQAs are considered beneficial for human health, mainly due to their anti-inflammatory and antioxidant properties. Recently, new biosynthetic pathways via a peroxidase-type p-coumaric acid 3-hydroxylase enzyme were discovered. More recently, a new GDSL lipase-like enzyme able to transform monoCQAs into diCQA was identified in Ipomoea batatas. CQAs were recently linked to memory improvement; they seem to be strong indirect antioxidants via Nrf2 activation. However, there is a prevalent confusion in the designation and nomenclature of different CQA isomers. Such inconsistencies are critical and complicate bioactivity assessment since different isomers differ in bioactivity and potency. A detailed explanation regarding the origin of such confusion is provided, and a recommendation to unify nomenclature is suggested. Furthermore, for studies on CQA bioactivity, plant-based laboratory animal diets contain CQAs, which makes it difficult to include proper control groups for comparison. Therefore, a synthetic diet free of CQAs is advised to avoid interferences since some CQAs may produce bioactivity even at nanomolar levels. Biotransformation of CQAs by gut microbiota, the discovery of new enzymatic biosynthetic and metabolic pathways, dietary assessment, and assessment of biological properties with potential for drug development are areas of active, ongoing research. This review is focused on the chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity recently reported for mono-, di-, tri-, and tetraCQAs.


Anti-Inflammatory Agents/chemistry , Antioxidants/chemistry , Cognitive Dysfunction/prevention & control , Neuroprotective Agents/chemistry , Phytochemicals/chemistry , Plants, Medicinal/chemistry , Quinic Acid/analogs & derivatives , Acyltransferases/genetics , Acyltransferases/metabolism , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Biosynthetic Pathways , Brachypodium/enzymology , Dietary Supplements , Humans , Ipomoea batatas/enzymology , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Phytochemicals/metabolism , Phytochemicals/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Quinic Acid/chemistry , Quinic Acid/metabolism , Quinic Acid/pharmacology , Terminology as Topic
16.
J Alzheimers Dis ; 81(4): 1453-1468, 2021.
Article En | MEDLINE | ID: mdl-33935097

BACKGROUND: The medicinal herb Centella asiatica has been long been used for its neuroprotective and cognitive enhancing effects. We have previously shown that two weeks of treatment with a water extract of Centella asiatica (CAW) improves cognition and activates the endogenous antioxidant response pathway without altering amyloid-ß (Aß) plaque burden. OBJECTIVE: Here, we assess the effect of long-term treatment of CAW in the 5xFAD mouse model of Aß accumulation. METHODS: Four-month-old 5xFAD mice were treated with CAW in their drinking water (2 g/L) for three months at which point they underwent cognitive testing as well as analysis of Aß plaque levels and antioxidant and synaptic gene expression. In order to confirm the involvement of the antioxidant regulatory transcription factor NRF2 on the effects of CAW on synaptic plasticity, neurons isolated from 5xFAD mice were also treated with CAW and the targeted inhibitor ML385. RESULTS: Three months of treatment with CAW improved spatial and contextual memory as well as executive function in 5xFAD mice. This improvement was accompanied by increased antioxidant gene expression and a decrease in Aß plaque burden relative to untreated 5xFAD animals. In isolated neurons, treatment with ML385 blocked the effects of CAW on dendritic arborization and synaptic gene expression. CONCLUSION: These results suggest that prolonged CAW exposure could be beneficial in Alzheimer's disease and that these effects likely involve NRF2 activation. Moreover, these findings suggest that targeting NRF2 itself may be a relevant therapeutic strategy for improving synaptic plasticity and cognitive function in Alzheimer's disease.


Amyloid beta-Peptides/metabolism , Centella , Hippocampus/drug effects , Memory/drug effects , NF-E2-Related Factor 2/metabolism , Plant Extracts/pharmacology , Animals , Behavior, Animal/drug effects , Cognition/drug effects , Discrimination Learning/drug effects , Gene Expression/drug effects , Hippocampus/metabolism , Imidazolidines/pharmacology , Mice , Neurons/drug effects , Neurons/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Spiro Compounds/pharmacology , Triterpenes/pharmacology
17.
Neurobiol Aging ; 100: 48-58, 2021 04.
Article En | MEDLINE | ID: mdl-33486357

The water extract of Centella asiatica (CAW) improves cognitive and mitochondrial function and activates the nuclear factor erythroid 2-related factor 2 (NRF2) regulated antioxidant response pathway in aged mice. Here we investigate whether NRF2 activation is required for the cognitive and mitochondrial effects of prolonged CAW exposure during aging. Five-month-old NRF2 knockout (NRF2KO) and wild-type mice were treated with CAW for 1, 7, or 13 months. Each cohort underwent cognitive testing and hippocampal mitochondrial analyses. Age-related cognitive decline was accelerated in NRF2KO mice and while CAW treatment improved cognitive performance in wild-type mice, it had no effect on NRF2KO animals. Hippocampal mitochondrial function also declined further with age in NRF2KO mice and greater hippocampal mitochondrial dysfunction was associated with poorer cognitive performance in both genotypes. Long-term CAW treatment did not affect mitochondrial endpoints in animals of either genotype. These data indicate that loss of NRF2 results in accelerated age-related cognitive decline and worsened mitochondrial deficits. NRF2 also appears to be required for the cognitive enhancing effects of CAW during aging.


Aging/genetics , Aging/psychology , Antioxidants , Cognition/drug effects , Cognitive Dysfunction/genetics , Mitochondrial Diseases/genetics , NF-E2-Related Factor 2/physiology , Phytotherapy , Triterpenes/pharmacology , Aging/drug effects , Animals , Centella , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/psychology , Mice, Inbred C57BL , Mice, Knockout , Mitochondria , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/psychology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Plant Extracts , Triterpenes/therapeutic use
18.
Front Nutr ; 8: 799137, 2021.
Article En | MEDLINE | ID: mdl-35096945

Botanical products are frequently sold as dietary supplements and their use by the public is increasing in popularity. However, scientific evaluation of their medicinal benefits presents unique challenges due to their chemical complexity, inherent variability, and the involvement of multiple active components and biological targets. Translation away from preclinical models, and developing an optimized, reproducible botanical product for use in clinical trials, presents particular challenges for phytotherapeutic agents compared to single chemical entities. Common deficiencies noted in clinical trials of botanical products include limited characterization of the product tested, inadequate placebo control, and lack of rationale for the type of product tested, dose used, outcome measures or even the study population. Our group has focused on the botanical Centella asiatica due to its reputation for enhancing cognition in Eastern traditional medicine systems. Our preclinical studies on a Centella asiatica water extract (CAW) and its bioactive components strongly support its potential as a phytotherapeutic agent for cognitive decline in aging and Alzheimer's disease through influences on antioxidant response, mitochondrial activity, and synaptic density. Here we describe our robust, scientific approach toward developing a rational phytotherapeutic product based on Centella asiatica for human investigation, addressing multiple factors to optimize its valid clinical evaluation. Specific aspects covered include approaches to identifying an optimal dose range for clinical assessment, design and composition of a dosage form and matching placebo, sourcing appropriate botanical raw material for product manufacture (including the evaluation of active compounds and contaminants), and up-scaling of laboratory extraction methods to available current Good Manufacturing Practice (cGMP) certified industrial facilities. We also address the process of obtaining regulatory approvals to proceed with clinical trials. Our study highlights the complexity of translational research on botanicals and the importance of identifying active compounds and developing sound analytical and bioanalytical methods for their determination in botanical materials and biological samples. Recent Phase I pharmacokinetic studies of our Centella asiatica product in humans (NCT03929250, NCT03937908) have highlighted additional challenges associated with designing botanical bioavailability studies, including specific dietary considerations that need to be considered.

19.
Front Pharmacol ; 12: 788312, 2021.
Article En | MEDLINE | ID: mdl-34975484

Centella asiatica is an herb used in Ayurvedic and traditional Chinese medicine for its beneficial effects on brain health and cognition. Our group has previously shown that a water extract of Centella asiatica (CAW) elicits cognitive-enhancing effects in animal models of aging and Alzheimer's disease, including a dose-related effect of CAW on memory in the 5xFAD mouse model of ß-amyloid accumulation. Here, we endeavor to elucidate the mechanisms underlying the effects of CAW in the brain by conducting a metabolomic analysis of cortical tissue from 5xFAD mice treated with increasing concentrations of CAW. Tissue was collected from 8-month-old male and female 5xFAD mice and their wild-type littermates treated with CAW (0, 200, 500, or 1,000 mg/kg/d) dissolved in their drinking water for 5 weeks. High-performance liquid chromatography coupled to high-resolution mass spectrometry analysis was performed and relative levels of 120 annotated metabolites were assessed in the treatment groups. Metabolomic analysis revealed sex differences in the effect of the 5xFAD genotype on metabolite levels compared to wild-type mice, and variations in the metabolomic response to CAW depending on sex, genotype, and CAW dose. In at least three of the four treated groups (5xFAD or wild-type, male or female), CAW (500 mg/kg/d) significantly altered metabolic pathways related to purine metabolism, nicotinate and nicotinamide metabolism, and glycerophospholipid metabolism. The results are in line with some of our previous findings regarding specific mechanisms of action of CAW (e.g., improving mitochondrial function, reducing oxidative stress, and increasing synaptic density). Furthermore, these findings provide new information about additional, potential mechanisms for the cognitive-enhancing effect of CAW, including upregulation of nicotinamide adenine dinucleotide in the brain and modulation of brain-derived neurotrophic factor. These metabolic pathways have been implicated in the pathophysiology of Alzheimer's disease, highlighting the therapeutic potential of CAW in this neurodegenerative disease.

20.
Nutrients ; 12(11)2020 Nov 13.
Article En | MEDLINE | ID: mdl-33202902

Centella asiatica (CA) is an edible plant and a popular botanical dietary supplement. It is reputed, in Ayurveda, to mitigate age-related cognitive decline. There is a considerable body of preclinical literature supporting CA's ability to improve learning and memory. This study evaluated the contribution of CA's triterpenes (TT), widely considered its active compounds, and caffeoylquinic acids (CQA) to the cognitive effects of CA water extract (CAW) in 5XFAD mice, a model of Alzheimer's disease. 5XFAD mice were fed a control diet alone, or one containing 1% CAW or compound groups (TT, CQA, or TT + CQA) equivalent to their content in 1% CAW. Wild-type (WT) littermates received the control diet. Conditioned fear response (CFR) was evaluated after 4.5 weeks. Female 5XFAD controls showed no deficit in CFR compared to WT females, nor any effects from treatment. In males, CFR of 5XFAD controls was attenuated compared to WT littermates (p = 0.005). 5XFAD males receiving CQA or TT + CQA had significantly improved CFR (p < 0.05) compared to 5XFAD male controls. CFR did not differ between 5XFAD males receiving treatment diets and WT males. These data confirm a role for CQA in CAW's cognitive effects.


Alzheimer Disease/drug therapy , Centella/chemistry , Cognitive Dysfunction/drug therapy , Quinic Acid/pharmacology , Triterpenes/pharmacology , Animals , Cognition/drug effects , Cognition Disorders , Diet , Disease Models, Animal , Female , Learning/drug effects , Male , Memory/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plant Extracts , Quinic Acid/analogs & derivatives , Quinic Acid/therapeutic use , Triterpenes/therapeutic use
...